Description Computing the
derivative
of an expression with respect to some variable is a classical calculus problem. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's instantaneous velocity.
We present here rules for determining the derivative
dE/dX
of simple expressions
E
for a given variable
X
. Recall that for number
N
, variables
X
and
Y
, and expressions
E1
and
E2
the following rules apply:
-
dN / dX = 0
.
-
dX / dX = 1
.
-
dX / dY = 0
, when X != Y
.
-
d(E1 + E2) /dX = dE1 / dX + d E2 /dX
.
-
d(E1 * E2) / dX = (d E1 / dX * E2) + (E1 * d E2 /dX)
.
Examples Our solution consists of the following parts:
- Define a data type
Exp
to represent expressions (
).
- Introduce an example expression
E
for later use (
).
- Define the actual differentiation function
dd
(
). Observe that this definition depends on the use of patterns in function declarations, see Rascal:Function.
- Define simplification rules (
). Observe that a default rule is give for the case that no simplification applies (
).
- Define the actual simplication function
simplify
that performs a bottom up traversal of the expression, application simplification rules on the the up.
module demo::common::Derivative
data Exp = con(int n)
| var(str name)
| mul(Exp e1, Exp e2)
| add(Exp e1, Exp e2)
;
public Exp E = add(mul(con(3), var("y")), mul(con(5), var("x")));
public Exp dd(con(n), var(V)) = con(0);
public Exp dd(var(V1), var(V2)) = con((V1 == V2) ? 1 : 0);
public Exp dd(add(Exp e1, Exp e2), var(V)) = add(dd(e1, var(V)), dd(e2, var(V)));
public Exp dd(mul(Exp e1, Exp e2), var(V)) = add(mul(dd(e1, var(V)), e2), mul(e1, dd(e2, var(V))));
public Exp simp(add(con(n), con(m))) = con(n + m);
public Exp simp(mul(con(n), con(m))) = con(n * m);
public Exp simp(mul(con(1), Exp e)) = e;
public Exp simp(mul(Exp e, con(1))) = e;
public Exp simp(mul(con(0), Exp e)) = con(0);
public Exp simp(mul(Exp e, con(0))) = con(0);
public Exp simp(add(con(0), Exp e)) = e;
public Exp simp(add(Exp e, con(0))) = e;
public default Exp simp(Exp e) = e;
public Exp simplify(Exp e){
return bottom-up visit(e){
case Exp e1 => simp(e1)
}
}
Let's differentiate the example expression
E
:
rascal>import demo::common::Derivative;
ok
rascal>dd(E, var("x"));
Exp: add(
add(
mul(
con(0),
var("y")),
mul(
con(3),
con(0))),
add(
mul(
con(0),
var("x")),
mul(
con(5),
con(1))))
As you can see, we managed to compute a derivative, but the result is far more complex than we would like.
This is where simplification comes in. First try a simple case:
rascal>simplify(mul(var("x"), add(con(3), con(5))));
Exp: mul(
var("x"),
con(8))
Now apply simplification to the result of differentiation:
rascal>simplify(dd(E, var("x")));
Exp: con(5)